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Synopsis 
Applying the Boltzmann superposition principle on a generalized Maxwell model, 

an analysis of the relations between extension, relaxation, and hysteresis is presented, 
which shows that any one of these three can be calculated from the other two. It is 
shown that the relaxation modulus does not vary with strain rate when time is measured 
from the start of extension, except in the early period of relaxation. It is demonstrated 
that the first derivative of the ratio of extension stress-strain rate with respect to time is 
the limiting value of the relaxatjon modulus. The short-time end of relaxation modulus- 
time curve can be readily extended for several decades of logarithm of time without re- 
sorting to the temperature effect. The results obtained from the treatment of experi- 
mental data on polyisobutylene verify the theoretical deductions, which may also be 
considered as an additional explicit proof of the Boltemann superposition principle. 

Introduction 
Although stress relaxation and hysteresis have enjoyed important posi- 

tions in the study of mechanical behavior of viscoelastic materials for many 
years, several important basic details remain to be elucidated with regard 
to the characteristics and the technique of the treatment of experimental 
data. For instance, experiments on stress relaxation and hysteresis are 
always carried out after a short duration of extension. However, the rela- 
tionships between extension stress and relaxation stress and between ex- 
tension stress and hysteresis stress are not explicitly defined. In  some 
published stress relaxation work, the experiment time is measured from the 
point where the extension is stopped and the relaxation begins.'v2 Accord- 
ing to the superposition principle, the time should be measured from the 
beginning of the exten~ion.~ The small difference in the zero point of time 
affects little the data at long time, but it becomes sigbificant in the short 
time region. What then is the proper way to measure the experiment 
time? 

Another problem in this area is the effect of strain rate on the relaxation 
stress. The stress-time relation derived from a Maxwell model, which is 
generally accepted for the interpretation of stress relaxation, predicts that 
the relaxation stress is directly proportional to strain rate; yet this equa- 
tion has not been used to treat relaxation curves obtained at  different strain 
rates. 
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The purpose of the present investigation was, therefore, to study these 
points of question, namely, (1) the relationships between extension stress 
and relaxation stress and between extension stress and hysteresis stress; 
(2) the proper way to measure the experiment time; and (3) the effect of 
strain rate on relaxation stress and hysteresis stress. 

Experimental 

The experimental data used in this work were obtained with specimens 
cut from compression molded polyisobutylene sheets, about two milli- 
meters thick, made of a commercial polyisobutylene (Vistanex 120, M ,  = 
1.9 X lo6). All runs were made under constant crosshead speed which was 
converted to strain rate by the use of an effective gage length calculated in 
the manner given in a previous work.4 

All the specimens were conditioned at  23OC. and 50% relative humidity 
for three days, before testing, except those for various strain rates which 
were conditioned in the same atmosphere for three months. The low 
strain rate data were obtained with an Instron table model instrument with 
specimens of '/2 in. width and 2 in. jaw separation. Data at higher strain 
rate were measured on a Plastechon dynamic tensile tester with jaw separa- 
tion a t  4 in. In the following discussion the true stress will be used through- 
out, which is calculated by applying a correction for the reduction of the 
cross sectional area, equal to 1 + y, where y is the elongation based on the 
effective gage length. 

Extension 

For a generalized Maxwellian model under extension at a constant strain 
rate v, the differential equation relating the stress, the relaxation time r, 
and the experiment time t is 

ds s -+ - = vE 
dt T 

where s is the contribution to stress of the Maxwell element with relaxation 
times between r and r + dr .  The relaxation time of an element is defined 
customarily as the ratio of the dashpot constant q to the spring constant 
E, i.e., r = q/E. Integrating first over time t, and then over relaxation 
time r ,  after inserting the definition E = H ( r ) d r ,  the stress is 

s, = v f ~ H [ l  - eXp(-t/T)]dT 

= vJ'rHdr - v f rHexp( - t / r ) d r  

= vf(0 
(2) 

where H ( T )  is a function of relaxation time r and generally called the 
spectrum of relaxation time. For convenience of discussion, the resulting 
total stress in extension over the whole mechanical model is designated by 
S,, and further abbreviated to the form vf(t). This equation has been 
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Time 

Fig. 1. A schematic extension stress-time curve. 

applied successfully to the extension data on various viscoelastic ma- 
t e r i a l ~ . ~  

It can be readily verified that the first integral is the sum of all the dash- 
pot constants in the model and that the first term, which is independent of 
time t, is the stress at constant strain rate v as if the springs were not present. 
This asymptotic Newtonian behavior of the viscoelastic material is de- 
picted as the horizontal broken line in Figure 1 to compare with the ex- 
tension stress shown as the solid line. This situation can be realized when 
the Maxwellian material is extended to very long time where the ratio 
t / r  is large enough for every value of 7 to make the second term vanish. 
This is the steady state of the viscoelastic material, at which all the dash- 
pots are moving at the prescribed strain rate. This steady state is similar 
to the completely relaxed state attained in a stress relaxation process in 
that all the elastic springs are relaxed. The similarity, however, ends here. 
In the steady state of extension with all the dashpots moving at  the pre- 
vailing strain rate, the strain increases with the increase of time, while 
in the latter case, the strain being constant, the time rate of motion of all 
the dashpots is zero. For all practical purposes, exp { -t/r ] is negligible 
at  the neighborhood of t / r  = 10. Since the relaxation time spectrum of a 
viscoelastic material generally covers a range of many decades of logarithm 
of relaxation time, at any time t which is practically attainable, there will 
be some elements in the model with relaxation times smaller than or equal 
to t/lO, so that they are at their steady state. Therefore, during the ex- 
tension of a viscoelastic material, due to its very nature of viscoelasticity, 
more and more elements are reaching the steady state as the experiment 
time increases. It will be shown later that the time rate of approaching 
the steady state is the limiting case of stress relaxation. 

Relaxation 

The stress relaxation experiment is carried out by stretching the visco- 
elastic material at a constant strain rate to a predetermined strain and then 
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Fig. 2. Extension and relaxation stress-time curves of polyisobutylene. 

the decaying stress is measured as a function of time while the strain is 
kept at  the specified level. This process can be considered as subjecting 
the material to a constant strain rate to a certain time to and then a strain 
rate of the same magnitude but opposite in sign is applied so that the 
net strain rate is zero. According to the Boltzmann superposition prin- 
ciple, when the stress during the extension at  strain rate v is given by eq. 
(1) then, the relaxation stress S, after time 20 during relaxation will be 

S, = vf(0 - Of@ - to) (2) 
because the negative strain rate is applied at time to. Subtracting eq. 
(2) from eq. (l), we have 

S, - 8, = vf(t - t o )  (3) 
This function is of the same form as that of eq. (1) except that the origin of 
time axis is shifted to to, i.e., 

(8, - &)t=to+a = S e , t = ~  = vf(A) (4) 
This expression states that if the behavior of the viscoelastic material 
follows eq. (1) and the superposition principle is applicable to this ma- 
terial, the difference between the extension stress S, and the relaxation 
stress S, at  a certain time after the extension is stopped is equal to the 
extension stress at the same interval of time from the moment when the 
extension was started. 

In order to verify this equality, a series of relaxation determinations were 
made on polyisobutylene specimens at  a single strain rate of 1.0 min.-' 
The extension in individual runs was stopped at 20, 30, 40, and 50 
sec., respectively. The resulting curves are reproduced in Figure 2 along 
with the extension stress-time curve obtained separately. For the uni- 
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Fig. 3. A comparison of (8, - &)/u with S,/v: (0) Experimental data; (heavy -) 
theoretical line; (light -) line of 10% deviation. 

formity of the figures in this work S/v is plotted as ordinate, instead of S. 
When the strain rate is the same for all runs, this change amounts only to a 
change of scale, and will not have any effect to the discussion. The ex- 
teiwion part of each relaxation curve has been made to almost coincide 
with the extension curve by comparing several points. The average of the 
several ratios of the stresses at the corresponding experiment times was 
applied to the respective relaxation curve. The adjustment factor ranges 
from 0.96 to 1.04 in value, which is reasonable considering the experi- 
mental error involved in the measurement of specimen width and thickness. 
According to eq. (4), all the distances marked as a in Figure 2, which repre- 
sent either Se/v at t = Aor ( X J v  - SJv) at t = to + A, should be equal, and 
so should be the other corresponding distances for other values of A. 
The fact that it is the case can be seen from Figure 3, in which the dif- 
ference (Se/v - S,/v) at t = t,, + A is plotted against Se/V at t = A. For 
clarity only some sample points are shown as solid circles, while the heavy 
line is the predicted curve with the light line showing the limit of 10% 
deviation from the predicted value. It is evident that the experimental 
results are within this limit, which is generally taken as the magnitude of 
experimental error for this type of determination. Therefore, eq. (4) is 
verified. 

Hysteresis 

The conventional hysteresis experiment is to extend the specimen to a 
certain elongation, say loo%, at constant crosshead speed and then let the 
specimen retract to zero stress by reversing the motion of the crosshead. 
The ascending branch and the descending branch form a loop with the 
elongation axis when the data are plotted as a stress-strain curve. A 
stress-time plot can be obtained by turning around the descending branch 
about a vertical axis at 100% elongation and changing the elongation 
axis into time scale. The result will bear the resemblance to a stress 
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Fig. 4. Relations between extension, relaxation and hysteresis stresses. 

relaxation curve, except the descending branch is much steeper than the 
relaxation curve. Hence, the phenomenon of hysteresis is nothing but a 
variation of a stress relaxation process, in which the magnitude of the 
negative strain rate is twice that of the extension strain rate instead of 
being equal to the extension strain rate as in the case of relaxation. The 
stress S h d  on the descending branch of a hysteresis loop is described by the 
following equation : 

s h d  = vf(t)  - 2vf(t - h) (5 )  

where all symbols have the same meaning as before. A comparison of 
eqs. (5) with eqs. (1) and (2 )  reveals that 

s e / v  - Sr/v = &/v - S h d / V  (6) 

(7) 

or 

( se /v  - s h d / v )  t = ta + 0. = 2 ( se /v )  t = A 

That is to say, the difference between the extension stress and the 
relaxation stress a t  t = to + A is equal to the difference between the re- 
laxation stress and the stress on the descending branch of the hysteresis 
loop at  the same experiment time, which is, in turn, equal to the extension 
stress a t  t = A, as shown previously. Or, the difference between the ex- 
tension stress and the stress on the descending branch of the hysteresis 
loop at  time t = to + A is twice as much as the extension stress a t  t = A. 
This statement is diagramed in Figure 4, in which all distances marked a 
should be equal. The equations for the hysteresis loops after the first 
are readily to be derived by further application of the superposition 
principle. The equations for the second loop, for instance, are 

s h a  = v f ( t )  - 2vf(t - to) + 28f(t - t t )  

8 h d  = vf(t)  - 28f(t - &l) + 2rf(t - t f )  - 28f(t - ti) 
(8) 

(9) 

For the third loop, for #ha one term of 2vf(t - t,) is added to the expression 
for of previous loop and for #hd the difference 2vf(t - .+) - %f(t - ts) is 
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Fig. 5. Extension, relaxation and hysteresis curves of polyisobutylene 

Figure 6. 

added, and so on. The difference between &a and S h d  on any two adjacent 
branches is 

8 h a  - s h d  = 2vf(t - b) 
where t, is the time at which these two branches are joined together. 
For the purpose of testing this deduction, a hysteresis experiment with 



t,min. 
Fig. 7. Prediction of extension and hysteresis stresses (- - -); from experimental 

extension and relaxation stresses (-); (0. 0) experimental hysteresis streases. 

polyisobutylene specimens was made by extending the specimens for 20 
sec. and reversing the crosshead motion at this moment and 10 sec. there- 
after, so that the resulting data can be compared with the relaxation data 
shown in Figure 2. Both sets of data are shown together in Figure 5. 
The waves at the lower part of the figure are the successive hysteresis loops. 
The validity of eqs. (6) and (7) are shown in Figure 6 by plotting the 
differences on the left side of the equations against that on the right side as 
points. The heavy lines are the theoretical curves, while the light lines 
are the limits of 10% error. The fact that no points are beyond the 
limits of 10% error is considered as a satisfactory proof for the equations 
derived. As a further proof of all the equations derived so far, the ex- 
tension part of a relaxation curve with t = 50 sec. was extended to experi- 
mental time beyond 50 sec. by use of the rewritten form of eq. (4). 

S e , l = t a f A  = S e . t = A  f Sr , t= ta+A 

The result is reproduced in Figure 7 as broken line with the relaxation 
curve itself being shown as solid line. From this calculated extension 
curve the descending branches of two hysteresis curves were calculated by 
means of eq. (7), one for lo = 0.5 min., and the other for 6 = 1.0 min., 
corresponding to  50 and loo’% nominal elongation, respectively. The 
descending branches were allowed to go below the time axis, ie., the stress 
was allowed to assume negative values. Although it is not very realistic, 
theoretically it is sound. The point at which the descending curve 
intercepted the time axis was the end of the descending branch as S h d  = 0 
at this point. The ascending branch of the second hysteresis loop of 50% 
elongation was calculated from this point on by means of eq. (8). The 
duration of the ascending branch of the second loop was taken as equal to 
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that of the descending branch of the first loop. The reason for this is that 
since the crosshead was set to return at  a specific elongation, the amount of 
retraction occurring in the descending branch of the first loop had to be 
made up in the ascending branch of the second loop before the crosshead 
started to return. The second descending branch was calculated in 
the same manner as the first was obtained. The resulting curves are 
reproduced in Figure 7, in which the points indicate the comparable ex- 
perimental data determined in separate runs. The agreement is fairly 
good. 

Effect of Strain Rate 

It has been shown in the previous sections by comparing relaxation stress 
and extension stress at the same strain rate that the difference between 
these two stresses is a function of (t - b), instead of either t or to alone, as 
described by eq. (3). This equation also shows that the function (S,/v 
- S,/v) = f(t - to) is independent of strain rate v. This is shown to 

be indeed the case with the data shown in Figure 8, in which a composite 
Se/v-versus-t curve obtained on polyisobutylene at several strain rates 
ranging from 0.0216 to 27 min.-l is shown along with the SJv-versus-t 
curves a t  strain rates of 0.0216,0.216,2.16, and 27 min.-I asindicated. As it 
would not be possible with a linear scale to cover the very wide experi- 
mental range without losing detail, these curves are presented in log-log 
scale. The extension of all relaxation runs was stopped a t  50% nominal 
elongation. The difference curves X,/v - X,/v calculated from this set of 
data are superimposing as broken lines on the respective relaxation curves 
and replotted against (t - to) as solid circles in Figure 9 to compare with 
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Fig. 9. Comparison of (S.  - S,)/v (0) with S,/v at various strain rates. 

the extension curve shown as solid line. The excellent agreement between 
the points and the curve proves that eqs. (3) and (4) are obeyed not only 
by experimental data a t  the same strain rate, but also by the relaxation 
stress of polyisobutylene at  various strain rates. 

A natural conclusion from this result would be that the experiment time 
in a relaxation experiment should be measured with t = to as the origin of 
the time axis, i.e., from the moment the extension is stopped. However, 
with the use of this convention, the difference between extension stress 
and relaxation stress would have to be used and the result would be exactly 
the S,/v-versus-t curve. If the latter curve is available to start with, 
there is no advantage to using the relaxation data to get the same curve 
again. In the next section it will be shown that relaxation data can be 
put to more profitable use when the experiment time is measured from the 
point t = 0. 

For cases of variable strain rate, it can be readily derived that eq. (3) 
still holds, except that v is the strain rate at  t = to and that the relaxation 
modulus curve can be obtained by differentiating the resulting (S,/v - S,/v)- 
versus- (t  - to) curve. 

Relaxation Modulus 

The relaxation modulus E, is customarily defined6J as the ratio of 
relaxation stress to the elongation at  which the relaxation is carried out, 
under the restriction that the extension time is small, although it has not 
been specifically stated how small the extension time should be. On 
the other hand, the specification of small extension time, combined with 
the limit of linearity of the material, dictates the use of relatively high 
strain rate. This definition for relaxation modulus presumably comes from 
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the approximate form of eq. (2) for the relaxation stress. Equation (2)) 
without abbreviation, is of the form 

5 V = JrH[exp {- '+} - exp {- S}] dr 

= J T H  exp { - t / r )  [exp {t,,/r) - 11d7 
When exp { tc/r )is expanded and the terms higher than the first power are 
ignored, then 

The neglecting of the second power term requires for, say, 5% precision 
in the value of relaxation modulus that the value of t / ~  is smaller than 
0.1, i.e., the relaxation time T must be greater than 1Oh. Hence, the 
approximate form of the equation can be used only when the mechanisms 
that have relaxation times not ten times greater than are relaxed. It 
can be readily proved that a mechanism is relaxed and contributes nothing 
to the relaxation stress when the experiment time is about ten times as 
large as its relaxation time. The approximate form, therefore, is appli- 
cable only when the experiment time is about one hundred times greater 
than the time at  which the extension is stopped. For example, if the 
extension part in a relaxation determination lasts for 10 sec., the relaxation 
moduli calculated from the data a t  the time from 1000 sec. on will be 
reliable. Physically speaking, a t  time to the mechanisms with short relaxa- 
tion times are relaxed. The application of the negative strain rate puts 
these mechanisms into action again. In order to eliminate the contribu- 
tions of these mechanisms to the relaxation modulus and restore the true 
state of matter, time must be allowed for these mechanisms to relax. I n  
this sense, the general practice of ignoring the first few moments of the 
relaxation curve is correct. This investigation, however, goes one step 
further by indicating how long this initial part should be ignored. 

With this restriction applied, according to eq. (lo), the relaxation 
moduli obtained at various strain rates should be equal when they are 
measured a t  same value of experiment time t. This is clearly demon- 
strated in Figure 10 by the relaxation moduli of polyisobutylene calculated 
from the relaxation data shown in Figure 8. The initial parts of these 
curves spread out like a fan, but a t  experiment time about one hundred 
times greater than to, which is marked by an arrow on the individual curve, 
the curves coincide, although they were obtained at  various strain rates. 
Consequently, this result indicates that no special treatment is needed for 
relaxation data a t  various strain rates, if they are expressed in relaxation 
modulus, and that the extension time does not have to be short and any 
convenient strain rate can be used with equal benefit. It is obvious from 
this result that the experiment time should be measured from the start of 
extension. If t = to is taken as the origin of the time axis, the short time 
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Fig. 10. Relaxation modulus curves of polyisobutylene (0 )  at various strain rates 
and derivative of stress-strain curve at low strain rate (---) and at high strain rate 
(-.-I. 

end of the relaxation modulus curve would be badly distorted. An extreme 
case is shown in Figure 11. 

Time Derivative of Stress 

Equation (3) can be considered as a difference equation when to is very 
small and considered as an increment of t. When the increment approaches 
zero, the right side is the familiar form of a derivative. 

By definition, f(t) is equal to X,/v. The left side is 
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d f ( t )  dSe - 
dt vdt E,,,.-+o - 

This shows that the time derivative of the ratio of extension stress S, to 
the strain rate v is the value of relaxation modulus with to -+ 0. That is 
to say, the time derivative is the limiting value of the quantity designated 
as relaxation modulus. This derivative is the slope of the stress-strain 
curve which is generally called tangent modulus. Differentiation of 
extension stress Se (eq. (1)) with respect to time t gives us 

5 = 
cdt 

H exp { - t / r ) d r  

which is identical to the right side of eq. (10). Therefore, the so-called 
relaxation modulus is an approximation of this time derivative. Within 
the ordinary experimental error, these two quantities, namely, the modulus 
derived from the relaxation data and the tangent modulus calculated from 
the extension curve, can be used synonymously. This opens up a possi- 
bility of obtaining relaxation modulus from extension stress data. The 
advantage would be the extension of time range of relaxation modulus to 
the short time region without encountering the difficulty of doing the relaxa- 
tion experiment at very short time. With the help of the high speed in- 
strument available on the market, the time range of relaxation modulus 
curve can be extended to the microseconds without even running the 
relaxation determination. This is demonstrated by the broken line in 
Figure 10, which is the time derivative of the extension stress curve shown 
in Figure 8. The broken line at the left shown as dash and dot is the time 
derivative of the extension stress curve at  a high strain rate of 3100 min.-' 
Thus, the relaxation modulus-versus-time curve is readily extended to 
cover many decades of logarithm of experiment time. A curve of this 
wide range would be a great help in the construction of master curve. 

By the definition of the generalized Maxwell model, the slope of the 
S,/v-versus4 curve at  1 = 0 is the Young's modulus of the viscoelastic 
material, which is the sum of all the spring constants in the model. In 
order to avoid the ambiguity in the determination of the slope of a curve 
at its initial part, the slope can be taken from both the extension part and 
the relaxation part of a relaxation run at the neighborhood of to, and the 
slopes at to are obtained by extrapolation, since it can be readily shown by 
differentiating eq. (3) that 

- - - = J H e x p  {- t - t o  y} d r  
vdt vdt 
dSe ClS, 

and that at t=to the difference of these two slopes is equal to the Young's 
modulus at its strictest sense. The values determined from the relaxation 
data at strain rates of 0.0216, 0.216, 2.16, and 27 min.-' are 110, 105, 118, 
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and 110 psi, respectively, which are way below what should be as given by 
the published master curves of the same material of different molecular 
weight. This is attributed to the slow response of the instrument used 
for the determination, as before any load is recorded, some of the mecha- 
nisms are relaxed already. Nevertheless, eq. (12) may prove to be a better 
means than the conventional method to determine Young’s modulus for 
practical use. 

Discussion 

Since the Boltzmann superposition principle has been assumed to be 
valid in the theoretical derivations of this work, the agreement between 
predictions and experimental results can be considered as an additional 
explicit proof, by evidence under constant strain rate, to the applicability 
of this principle to the tensile behavior of viscoeleastic materials. 

It should be pointed out here that true stress is used in this work and 
that with regard to the distribution of relaxation time the above discussion 
is rather general in nature since the spectrum H ( T )  has been in no way 
limited to  any particular form. The results obtained may, therefore, be 
applied to any kind of distribution, continuous or discrete. (For discrete 
distribution, of course, the integrations in the equations will be replaced 
by summations.) 

It has been indicated in this investigation that any one of the three types 
of stress, namely, extension, relaxation and hysteresis stresses, can be 
calculated from the other two. When the initial part of a relaxation curve 
and the ascending branch of the first hysteresis loop are considered as part 
of the respective curve, all three then are fixed if one of them is known. To 
be more specific, relaxation and hysteresis curves can be obtained from 
extension curve directly. The extension part of relaxation curve or the 
ascending branch of the first hysteresis loop can be extended to longer time 
by the use of the respective relaxation part and hysteresis part. Theoreti- 
cally speaking, the operation of addition or subtraction in eqs. (4), (6)) 
and (7) can be repeated indefinitely and curves of many decades of log- 
arithm of experiment time can be obtained when one curve is known for a 
wide range of time. However, the time increment in each operation is 
limited by the value of to, which is usually not very large. Although the 
technique can be applied advantageously for a short range of time, as has 
been done in this work, it might be very tedious for the purpose of obtain- 
ing a curve of wide range of time. For instance, with a relaxation curve 
with to = 1 min., it would not be practical to  calculate the extension curve 
into the region of thousands of minutes. In this case, eq. (11) may prove 
to be more convenient to use. That is to say, the relaxation modulus curve 
can be obtained by differentiating the extension curve, and reversely, ex- 
tension curve can be calculated from the relaxation modulus curve by inte- 
gration. 

This investigation shows also a convenient method to determine hys- 
teresis loss directly from the extension stress-time curve. Hysteresis loss is 
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Fig. 12, Graphical calculation of hysteresis loss from extension curve. 

generally defined as the percentage of energy lost as heat. On a stress- 
strain diagram it is the ratio of the area of the hysteresis loop to the area 
under the ascending branch. In  terms of stress and time, the hysteresis 
loss w is 

v f S,dt - v f Shddt w =  
v f S,dt 

= 1 - J$+' [ f ( t )d t  - 2 f(t  - to)]dt/J: f ( t ) d t  
= 1 - [Y:+* f ( t ) d t  - 21: f ( t ) d t ] /  11," f(t)dt + 12 f(W1 
= 1 - (C - 2A)/(A+B) 

where A, B, and C designate the areas on a stress-time diagram, represent- 
ing the corresponding integrals, as shown in Figure 12. The value of t o  is 
predetermined. The value of t + A is determined by the point on the time 
axis where the stress is twice as much as that at  to, found by trial and 
error. Applying this technique to the stress time curve shown in Figure 7, 
the hysteresis loss of polyisobutylene at  a strain rate of 1.0 min.-' and 
100% elongation is found to be lS.O%, compared to the experimentally 
determined value of 18.2%. The agreement is good enough for ail practical 
purposes. 

Summary 
An additional explicit proof of the applicability of the Boltzmann 

superposition principle to the tensile behavior of viscoelastic materials has 
been obtained by means of constant strain rate experiments. 

(2) It has been demonstrated that any one parameter-relaxation 
stress, hysteresis stress, or extension stress-can be calculated from any 
other. 

(3) The relaxation modulus curve determined at  various strain rates. is 
essentially the same unique and characteristic curve for each viscoelastic 
material. 

(4) It has been shown that it is most satisfactory to  choose the point at 
which extension starts as the origin of the time axis of a relaxation modulus 
curve. 

(1) 
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(5) The tangent modulus obtained from a stress-strain curve is the 
limiting value of relaxation modulus. In practice, the time derivative of 
extension stress can be used to extend the relaxation curve at  the short- 
time end. 

(6) A technique has been developed for calculating hysteresis loss from 
the extension stress- time curve. 

Warner Corporation for permission to publish this work. 
The author is indebted to Dr. Eugene P. Goldberg for valuable advice, and to Borg- 
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R6SW6 
En appliquant le principe de superposition de Boltzmann B un modele de Maxwell 

gkn6rali6, on pr6sente une analyse des relations entre extension, relaxation, et hyst6rksis. 
Cette analyse montre que chacune de ces propri6tb peut i%re calcul6e A partir des deux 
autres. On montre que le module de relaxation ne varie pas avec la vitesse d’klongation 
lorsque le temps est mesur6 b partir de commencement de l’extension, except6 dans la 
primibre p6riode de relaxation. On d6montre que la dkrivk premiere par rapport au 
temps, du rapport force d’extension-vitesse d’6longation est la valeur limite du module 
de relaxation. La brusque fin de la courbe module de relaxation-temps peut &re 
facilement Btendue sur plusieun decades de logarithme du temps sans recourir B l’effet 
de temphrature. Les r6sultats obtenus b partir due traitement des donnBes expkri- 
mentales obtenues pour le polyisobutylene vBrifient les deductions thhoriques, ce qui 
peut Bgalement &re consid6r6 comme une preuve explicite supplkmentaire du principe 
de superposition de Boltzmann. 

Zusammenfassung 
Unter Anwendung des Boltzmanneschen Superpositionsprinzips auf ein verallgemein- 

ertes Maxwellmodell wird eke  Analyse der Beziehung zwischen Dehnung, Relaxation 
und Hysterese gegeben, die seigt, dass jede dieser drei Grossen aus den anderen zwei 
berechnet werden kann. Es wird gezeigt, dass sich der Relaxationsmodul mit der 
Verformungsgeschwindigkeit, bis auf die Anfangsperiode der Relaxation, nicht Zindert, 
wenn die Zeit vom Beginn der Dehnung an gemessen wird. Es wird gezeigt, dass die 
erste Ableitung des Verhaltnisses Dehnungsspannung : Verformungsgeschwindigkeit nach 
der Zeit den Grenzwert des Relaxationsmoduls bildet. Das Kurzzeitende der Relax- 
ationsmodul-Zeitkurve kann im logarithmischen Massstab leicht auf einige Grossen- 
ordnungen der Zeit ohne Rucksicht auf den Temperatureffekt extrapoliert werden. Die 
bei der Behandlung der Versuchsdaten an Polyisobutylen erhaltenen Ergebnisse be- 
statigen die theoretischen Ableitungen, was auch als ein zusatzlicher expliziter Beweis 
des Boltzmannschen Superpositionsprinzips betrachtet werden kann. 




